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Abstract

We present a simplified entropic-gravity style argument in (2+1)-dimensional space-
time, requiring only two key assumptions: (i) that the boundary at radius r has en-
tanglement entropy proportional to its perimeter, S(r) ∼ r, and (ii) that the asso-
ciated temperature scales inversely with r. By treating the incremental energy dE
as dE = T dS (a thermodynamic first-law relation for the boundary) [1, 2], we de-
rive an energy function E(r) whose radial derivative yields a 1/r force law. This
concise derivation provides a “door-opening” example of how quantum informational
constraints alone can yield a Newton-like force in lower dimensions, supporting the
broader hypothesis of emergent gravity from entanglement [3, 4].

1 Introduction

The notion that gravity might emerge from quantum informational principles has received
renewed attention, particularly via entropic arguments in which boundary thermodynamics
plays a fundamental role [1, 2, 3]. While many demonstrations focus on (3 + 1)-dimensional
spacetimes, the key ideas often simplify in lower dimensions. Here, we present a short, self-
contained derivation of a “Newton-like” 1/r force law in (2 + 1) dimensions, assuming only
that an entangling boundary at radius r has: (i) perimeter-proportional entropy, and (ii) a
scale-dependent temperature inversely proportional to r. We show that a thermodynamic
first-law ansatz dE = T dS produces a simple potential E(r) ∝ ln(r), whose radial derivative
is a 1/r force.

This minimal example illustrates the conceptual pathway from quantum informational
bounds to a gravitational-type force, underscoring how little additional structure is needed to
see an “entropic gravity” phenomenon in lower dimensions. In particular, our work extends
the spirit of earlier results in even lower-dimensional models such as the (1+ 1)-dimensional
entropic force demonstration by Mann and Mureika [4], but now adapted to the (2 + 1)-
dimensional context.
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Physical Picture and Scope. We stress that our (2 + 1)D setup is a conceptual model
(analogous to a flat-space holographic screen [1]) rather than a literal physical gravitational
system. In (2+1)D Einstein gravity without negative cosmological constant, one does not ob-
tain local gravitational fields from isolated masses; thus, the derived 1/r force here should be
viewed as emergent from quantum informational degrees of freedom, not classical curvature.
This clarifies that we are not conflating the toy construction with real-world (2+1)D gravity;
instead, we aim to demonstrate, in a stripped-down setting, how boundary thermodynamics
can reproduce a radial force in lower dimensions. Our arguments are motivated by well-
known results in black hole thermodynamics and holographic approaches, but we focus on
a simpler, flat-space analogy that reveals how minimal assumptions about perimeter-scaling
entropy and 1/r temperature lead to a gravitational-type force.

2 Setup: A (2+1)-Dimensional Boundary

We consider a (2 + 1)-dimensional spacetime with a radial coordinate r running outward
from some reference r0. At each radius r, we posit a circular boundary whose circumference
is ∝ r. In a quantum gravity or holographic context, such a boundary can be thought of as
carrying entanglement entropy S(r) [5, 6].

2.1 Perimeter-Law Entropy

Unlike in (3+1)-dimensional black hole horizons, where the area∼ r2 sets the entropy scaling,
here the boundary is effectively a circle of length ∝ r. Hence, we assume the boundary’s
entanglement entropy is

S(r) = α r, (1)

where α is a constant with dimensions of (entropy)/(unit length), setting the scale for the
entanglement entropy (we use units where kB = 1). This perimeter-law form follows naturally
from known (2+1)D black hole horizon results [5, 6, 7] and is consistent with typical boundary
(“area-law”) entanglement arguments, specialized to one spatial dimension at the boundary.

2.2 Temperature Scaling ∝ 1/r

Next, we assume the boundary has an associated temperature T (r) that scales inversely with
r:

T (r) =
β

r
, (2)

where β is a (dimensionless) constant setting the overall temperature scale. While T (r) =
β/r might seem a priori like a convenient guess, it echoes how surface gravity and Hawking-
like temperatures can behave in certain lower-dimensional contexts: for instance, in the
Unruh effect for an accelerating observer or in analogy with black hole horizons, where
the local temperature can be proportional to the surface gravity, which often has a 1/r
dependence in simplified (2 + 1)D setups [1, 3]. This choice is thus inspired by known
entropic-screen arguments [1] and is not arbitrary.
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Remark on the Key Assumptions. By highlighting Eqs. (1) and (2) up front, we emphasize
that these are the central postulates of the model: (i) S(r) ∼ r follows from the usual “area-
law” (now perimeter-law) in (2 + 1) dimensions, while (ii) T (r) ∼ 1/r is chosen in analogy
to well-known entropic and holographic screen arguments. Because these assumptions are
physically motivated, they serve as a plausible starting point for deriving an entropic force
in lower dimensions.

3 Derivation of a 1/r Force

We now show that if the total energy E(r) of the boundary satisfies the thermodynamic
first-law relation

dE = T (r) dS(r), (3)

then one obtains a potential whose radial derivative is a 1/r force.
Combining Eqs. (1) and (2), we have

dE =

(
β

r

) (
α dr

)
= αβ︸︷︷︸

C

dr

r
. (4)

Here, C ≡ αβ is a constant (which may be taken dimensionless if α has suitable units).

3.1 Energy Function and Radial Force

Integrate Eq. (4) from r0 to r:

E(r) − E(r0) =

∫ r

r0

C
dr′

r′
= C ln

(
r/r0

)
. (5)

Thus,

E(r) = E(r0) + C ln
( r

r0

)
. (6)

We may set E(r0) = 0 to define the zero of energy if desired; r0 > 0 is simply a reference
scale to avoid singularities in the logarithm as r → 0.

Define the radial “gravitational” force by

F (r) = − dE

dr
. (7)

Hence,

F (r) = −C
1

r
, (8)

a 1/r force law. This provides the (2+1)D analog of entropic derivations in four dimensions,
where an area-scaling entropy yields F ∼ 1/r2.
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4 Discussion

We have exhibited a minimal route to an entropic force in (2 + 1)D, requiring only two
quantum-informational inputs: (i) the perimeter scaling of a boundary’s entanglement en-
tropy and (ii) a radial temperature ∼ 1/r. The resulting energy function E(r) ∝ ln(r) leads
directly to an inverse-r radial force, analogous to the usual Newtonian 1/r2 law in (3 + 1)D
but adapted to one fewer spatial dimension. Once the effective thermodynamic identifica-
tion dE = T dS is accepted, little else is required to see this “entropic gravity” mechanism
[1, 2, 3, 4].

4.1 Physical Validity and Limitations

In a true BTZ black hole (with negative cosmological constant), the temperature scaling is
different from 1/r. Our use of T ∼ 1/r is therefore a flat-space, holographic-screen analogy
rather than a literal BTZ black hole property. Moreover, (2+1)D Einstein gravity in vacuum
does not yield local gravitational forces from point masses; here, the 1/r law emerges from
boundary entanglement degrees of freedom rather than classical curvature. In that sense,
this argument does not conflict with standard theorems regarding (2 + 1)D gravity [8].

It may also be instructive to connect the constant C = αβ with traditional gravitational
parameters. In a more realistic (2 + 1)D gravitational scenario, one might identify C with
(GM) (in appropriate units) to recover a standard force normalization. However, since our
primary interest is the scaling of the force, we leave C as a notional constant.

4.2 Significance and Possible Extensions

Despite (or perhaps because of) its simplicity, this toy model strengthens the view that
gravity can be treated as an emergent phenomenon arising from quantum entanglement and
thermodynamics. It is helpful to see how dimensionality directly affects the “Newtonian”
scaling of the entropic force: in (3 + 1)D, one obtains F ∼ 1/r2, while in (2 + 1)D the
perimeter-law entropy leads to F ∼ 1/r. This dimensional adaptation underscores the idea
that gravitational force laws can follow from how boundary (entangling) surfaces scale with
r, possibly hinting at a deeper connection between information geometry and the emergent
nature of gravity.

Clarifying how and where the boundary degrees of freedom reside can also be viewed
in light of Verlinde’s idea that a boundary screen carries the information about the mass
enclosed [1], or in terms of an entangling surface in a quantum field vacuum. In practice,
one can think of this radial boundary as a “holographic screen” or an “entangling ring”
across which states inside and outside are entangled. This interpretation helps justify ap-
plying thermodynamic notions (T, S,E) directly to the boundary without invoking a full
gravitational framework, consistent with other proposals that treat gravity as an emergent
phenomenon of entanglement [3].

It would be interesting to explore whether similar entropic force reasoning could illumi-
nate (3 + 1)D scenarios addressing, e.g., dark energy or modifications of gravity, and also
whether lower-dimensional condensed matter analogs might exhibit an “entropic force” in
boundary systems. Although speculative, such questions highlight the broader relevance of

4



these minimal derivations to ongoing research in quantum gravity. Even a stripped-down
derivation, as shown here, can inform how strongly dimensional considerations influence
emergent gravitational behaviors.
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black hole horizon thermodynamics. Any remaining oversights in this brief demonstration
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